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Abstract— We have studied the potential of combining 

multispectral Light Detection And Ranging (lidar) with 

positioning sensors to produce spatially resolved target 

identification in indoor environment. There is a growing need for 

automatic and mobile mapping and surveillance in buildings and 

locations where satellite positioning is not available. Lidar has 

proven a useful tool in distance measurements and is being used 

in Simultaneous Localization and Mapping (SLAM) as a range 

sensor. The recent advances in multispectral lidar technology will 

improve the laser-based object recognition and enable a new level 

of autonomous surveillance in the near future. 
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I.  INTRODUCTION 

Light detection and ranging (lidar) is increasingly being 
used in simultaneous location and mapping (SLAM) 
applications. SLAM applications typically combine lidar with 
odometry sensors, Inertial Measurement Units (IMU), and 
Global Navigation Satellite System (GNSS) [1].  

Thus far the majority of mobile laser scanning systems 
have been based on GNSS [2], but the increasing need for 
indoor applications will emphasize the role of multi-sensor 
indoor positioning [3,4]. 

Simultaneous Localization and Mapping (SLAM) provides 
infrastructure-free accurate and reliable localization and 
information on the environment by means of adaptive 
integration of data from multiple sensors (e.g., [4,5,6]).  

The common estimation frameworks to produce a SLAM 
solution are based on Kalman filter (KF) and particle filter (PF) 
[4]. PF was implemented in [7] to integrate motion 
measurements from a monocular camera, foot-mounted Inertial 
Measurement Unit (IMU), Sound Navigation And Ranging 
(sonar), and barometer to produce an accurate and reliable 
localization solution for use in SLAM. They obtained 
horizontal accuracy of 3.14 m with standard deviation of 2.82 
m for the localization solution and called for more accurate 
error modeling and additional sensors, such as multiple IMU’s, 
to improve the results.  

Trade-off between accuracy and time cost (related to 
computing efficiency and, e.g., image processing and feature 
extraction) is characteristic to indoor SLAM solutions [5]. 
Centimeter-level accuracy has been achieved with methods 
based on post processing, while a real-time application could 
be improved to decimeter level at least for feature-rich 
environments [8]. This emphasizes the need for new sensors to 
improve the efficiency of real-time SLAM. 

In the past few years, laser scanning (scanning lidar) 
applications have reached a new level as multi-wavelength 
lidar applications have emerged [9,10,11]. These new 
developments have significantly increased the information 
content in lidar point clouds and enabled a new level of detail 
in, e.g., vegetation studies, where hyperspectral sensing is a 
well-established method for identification and classification of 
targets [12,13,14]. Active hyperspectral sensing based on 
supercontinuum lasers has also been applied indoors for 
distinguishing different targets, both inorganic and vegetation 
[15,16]. 

The aim of the research presented in this paper is to 
enhance the lidar-based indoor mapping with a multispectral 
target identification aspect. Our aim is to combine multispectral 
3D point clouds and point-wise target identification from lidar 
with indoor positioning sensors, such as sonar and IMU, to 
produce an indoor mapping method for localizing different 
phenomena, such as humidity or mold in building structures. 
This would enable the use of indoor SLAM not only for 
navigation of an autonomous vehicle but also for autonomous 
surveillance in, e.g., security applications. 

This work in progress paper is organized as follows: the 
multispectral lidar approach and the experiments are described 
in Sect. II. The preliminary experimental results are presented 
in Sect. III, and the conclusions and forthcoming work are 
summarized in Sect. IV. 

II. II. MULTISPECTRAL LIDAR MEASUREMENT 

The FGI hyperspectral lidar (HSL) was used in the 
experiment. The first prototype of the lidar was built in 2012 
[9] and later modified for improved field operation and sensors. 
The operating principle is similar to a conventional pulse-based 
terrestrial laser scanner, except that supercontinuum laser 
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source [16] (41 mW average optical power, 5 kHz pulse rate) 
was used instead of a monochromatic laser. An off-axis 
parabolic mirror was used as a primary optic to gather the 
return pulses. A spectrograph (Specim ImSpector V10) was 
placed in front of the detector (avalanche photodiode, APD) to 
obtain a spectrum for the returning laser pulse. The APD array 
comprises 16 channels, but as an 8-channel digitizer (1 GHz) 
was used, the return intensity could only be recorded in 8 
wavelengths. Thus, in spite of the hyperspectral light source, 
the detector system is multispectral, but the wavelength 
channels can be selected by adjusting the spectrograph 
position. A monochromator (Oriel, Cornerstone 74125) was 
used to calibrate the spectral responses of the APD elements. A 
2D scanner was used to scan over the target and to produce a 
point cloud. See Fig. 1 and [9] for more details on the 
instrument and data processing. 

Fig. 2 shows an example of target identification with the 
HSL using spectral libraries. Spectral libraries also enable the 
classification of each point using the spectral features, which 
will enable faster (real-time) detection than that based on 3D 
features derived from the point cloud (e.g., during post-
processing). 

The targets were placed hanging on a wire in the middle of 
the area to be scanned. Three different targets were 
investigated: two cardboard samples (one wet and one dry) and 
a wooden panel with some moist on it (see Fig. 3).  

The wavelength channels in this study were 536, 589, 634, 
688, 741, 793, 848, and 951 nm. We scanned the entire corner 
of the laboratory to produce a point cloud larger than the 
samples to demonstrate how the point cloud can be applied for 
the location of the samples in the room. The HSL point clouds 
where processed with MATLAB 2013a software (The 
MathWorks®, Inc). The cardboard and wood samples were 
manually cropped from the point cloud to obtain the mean 
backscattered reflectance of all the echoes from each target. 

 
Fig. 1.  The FGI hyperspectral lidar (HSL) optical setup: Red beam: White 

laser input. R: 2D scanner. M: Off-axis parabolic mirror. S: Spectrograph. A: 

16 element avalanche photo diode array. 

 
Fig. 2.  Target identification with the FGI hyperspectral lidar (HSL), 

showing the capability of the instrument of detecting targets in the scanned 

area using spectral libraries. 

 

 
Fig. 3.  The targets hanged on a wire in the scanned area. The wet and dry 

cardboard samples are in the left and middle, respectively. 

III. EXPERIMENTAL RESULTS 

These results are preliminary, but they enable us to explore 
qualitatively the ability of our instrument to distinguish 
between wet and dry inorganic targets. 
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A. Point Clouds 

The point cloud of the scanned laboratory corner and the 
targets is shown in Fig. 4. Fig. 5 shows a close-up of the targets 
and their intensity in 848 nm. The difference in the intensity 
between different targets is visible at all wavelengths. 

 
Fig. 4.  The HLS point cloud (plotted with CloudCompare Version: 2.6.1) 

of the laboratory corner with the targets visible in the middle of the image. 

The point cloud is shown with intensity in one of the Near-Infrared channels. 

 
Fig. 5.  The targets cropped from the original point cloud. The intensity for 

each point is plotted in HSL channel 7: 848 nm. The wet and dry cardboard 

samples are in the left and middle, respectively (cf. Fig. 3). 

B. Spectra 

The spectra of the wet and dry cardboard panel are plotted 
in Fig. 6. There is a clear difference in the intensity in all 
channels. This difference is more pronounced at NIR 
wavelengths greater than 1000 nm because of the strong water 
absorption lines at 1400 nm and 1900 nm, which could be used 
for water detection [e.g., 15]. 

 
Fig. 6.  The 8-channel spectra of the wet and dry cardboard targets. 

 

To demonstrate the potential for mapping the spectral 
indices, we have also plotted a point cloud showing the water 
concentration index [17], which is based on a water absorption 
band at 970 nm and a reference wavelength (900 nm) in Fig. 7. 
The water index used in this study is defined as: 

 WI =
R900

R970

 (1)  

As 900nm and 970 nm were not available in this 
measurement, we used 848 nm and 951 nm instead (cf. [9]). 
Even though the water absorption is stronger at wavelengths 
further in the near-infrared, the difference between the wet and 
dry cardboard samples is already visible in the point cloud. 

 
Fig. 7.  The targets cropped from the original point cloud showing the 

water index R848/R951 (cf. Eq. 1) for each point. 

 

IV. IV. CONCLUSION AND FUTURE WORK 

In our earlier studies we have shown that the HSL is 
capable of detecting leaf-level moisture in vegetation and its 
distribution over a large target [9]. We have also shown the 
feasibility of the HSL in classifying targets with both spectral 
and spatial features (Fig. 2). By carrying out a similar 
experiment for industrial cardboard and wood samples, we 
aimed at demonstrating the prospects of extending this 
methodology to built environment. Combining the 
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hyperspectral lidar detection with positioning sensors would 
enable both real-time SLAM with improved optical sensing 
(e.g., point wise target identification using spectral libraries) 
and autonomous indoor mapping (with, e.g., unoccupied 
ground vehicles or other robotic platforms) and using the post-
processed 3D point cloud data in surveillance and other 
monitoring applications to identify targets of interest and 
producing indoor maps. 

Knowing from other studies (e.g., [15]) and preliminary 
experiments that water absorption in the NIR has a stronger 
effect on reflection than in our measurements, one of the aims 
of our future study is to extend the wavelength range of our 
instrument to cover the optical infrared bands for improved 
water and moisture detection. 
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