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Abstract—Indoor localization for smartphone users
enables applications such as indoor navigation or
augmented information services. Indoor localization
can be achieved by using camera images to resolve
the position based on a precomputed training set of
images. This technique is widely known as image-
based localization. In particular, we create a feature
cloud from a Structure from Motion (SfM) approach
as training set. At runtime, a feature-based matching
identifies similarities between a test image and the
trained set in order to solve the perspective n-point
(PNP) problem and compute the camera position.
Since indoor environments are challenging regarding
wall structure, light conditions and glass elements, we
combine SIFT and SURF image features to exploit
the advantages of both techniques and, thus, provide
a highly robust localization technology. We can even
show that our novel approach can be used for a
realtime image-based localization of a smartphone
using remote processing.

I. Introduction
There is an increasing need for accurate indoor lo-

calization using lightweight equipment such as a smart-
phones or even drones. Such lightweight equipment often
lacks range sensors for 3D perception. The sensor infor-
mation from, e. g., camera, WLAN strength or inertial
sensors is limited when compared to, e. g., depth sensors
or GNSS systems that are available outdoors. As a
result, monocular indoor localization is an active filed
of research[1], [2]. However, most techniques are either
not robust enough or they require high computational
power, which thwarts the execution on a smartphone.

In this paper, we present first results on a novel
approach that addresses performance by relocating com-
putationally heavy software parts to the cloud. Further-
more, our approach achieves a high robustness facing
indoor conditions by combining multiple image feature
detectors such as SIFT and SURF. We compute a 3D
model (feature point cloud) of the indoor scene prior to
the actual localization. No additional instrumentation
of the environment is considered. Another benefit of our
approach is its simplicity. Only a minor set of parameters
is necessary for the setup.

In this paper, we highlight specific obstacles in the
process of building a 3D model from an indoor environ-

Fig. 1: Android app implementing our localization ap-
proach, left: camera images, right: remotely com-
puted camera pose in a feature point cloud.

ment such as blending sunlight through windows or dark
areas due to missing ceiling lights. To better understand
those implications, our contribution also includes a com-
parison of SURF and SIFT in indoor environments.

An implementation of our localization approach in an
Android app is shown in Fig. 1. The app shows a split
window with the current camera image on the left and
a view from the computed camera pose in the feature
cloud on the right. We are able to deliver a localization
rate of up to 5Hz using our approach. The client/server
communication is realized using the MAP middleware
that already provides streaming image processing and
asynchronous remote task execution [3].

This paper is organized as follows. First, we give a
brief overview of related work in the field. Some chal-
lenging examples are presented in Section III. Section IV
introduces our approach. A first evaluation is presented
in Section V. Section VI concludes the paper.

II. Related Work
We focus on related works including monocular ap-

proaches to 3D model creation and indoor localization
with the possibility of realtime computation.

Monocular approaches to Simultaneous Localization
and Mapping (SLAM) such as ORB-SLAM [1] have
emerged recently. The model is built from a monocular
camera image stream. The SLAM approach includes the
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Fig. 2: Overview of our combined SIFT and SURF approach showing the non-recurrent model creation phase, the
components of the trained model, and the localization phase using, e. g., camera images from a smartphone.

localization even while the model is built, but can also be
used without altering the model as a pure localization.
We will evaluate our work against these in a future work.

Our work is based on photogrammetry methods for
3D model creation using the pipeline of Structure from
Motion (SfM). SfM is the used to create a 3D point
map from the scene using various images. Since SfM
extends the 3D map incrementally image by image, a
global optimization of the projections (BA) is necessary
afterwards. The result is a feature point cloud containing
all valid match points that have been used for the 3D
reconstruction together with all optimized poses of all
cameras that were used to create the model. An extensi-
ble software that implements most of this functionality
for a pinhole camera model is VisualSFM [4].

A fast indoor localization using the SfM pipeline and
VisualSFM similar to our approach is proposed in [2].
It uses the SIFTGPU implementation. The localization
is improved by an initialization from an RSSI-based
WLAN localization and speed up by a zone-based search
space partitioning for the feature cloud. The evaluation
does not contain information on the test image quality
and camera orientation.

The combination of SIFT and SURF feature detectors
can lead to improved detection results as described in [5].
This work targets face recognition. To the best of our
knowledge, we are the first to propose a combination of
SIFT and SURF for 3D model creation and localization.

III. Feature matching in an indoor setting

Both the creation of a feature cloud and the localiza-
tion of images (camera poses) are very sensitive to the
feature extractor and descriptor used. We highlight some
findings when matching images in an indoor environ-
ment. The goal is to find many similar image attributes
in two images to extract 3D information. Our overall
approach is divided into a model creation phase and an
arbitrary number of localization phases afterwards, see

Fig. 2 for an illustration. In the model creation phase
pairwise image matchings have to be identified. There-
fore, the keypoints and descriptors are computed first.
Then the descriptors are matched finding similarities. A
match is a set of two points in two images that describe
the same 3D point in the real world. These matches are
detected in four steps:

1) compute the best two matches for each descriptor
in image A compared to B using L1 norm and
remove non-unique matches for better robustness,

2) repeat step 1 using interchanged images,
3) remove matches that do not appear in both results

result of step 1 and step 2 (only cross matchings
are valid),

4) find the transformation between images A and B
(homography) and remove outliers that are consid-
ered false positives. We use the LMEDS approach
to find the homography.

Feature detectors are varying in robustness against
scale, orientation, light conditions, and other attributes.
A 3D model can only be created having images that
show each scene from different view angles, e. g., 180◦ in
an office floor. We show pairwise image matchings using
SIFT and SURF of three challenging areas to show the
qualitative differences in Fig. 3.

Fig. 3 (top) shows the robustness against a huge angle
between two pictures of approx. 130◦. SIFT can handle
this situation better. So, less pictures are necessary
to reconstruct an indoor scene, because wider angles
between pictures are tolerable. A second challenging
area has been identified around a glass door with a
window in the background. Fig. 3 (middle) shows this
configuration. Although, the number of corresponding
SURF features seems higher, some false positives can be
recognized in the case of SURF (e. g., in the reflection
on the floor). The SIFT correspondences are also better
here. Finally, a scene with a dark corner shows the
advantages of SURF over SIFT in some situations. See
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Fig. 3: Comparison of SIFT and SURF matchings in challenging indoor scenarios.

Fig. 3 (bottom) for an illustration. SURF can handle
dark scenes often better than SIFT. This is very relevant
for indoor environments.

We also tested other combinations of extrac-
tor/descriptor types: FAST/FREAK, ORB/ORB,
FAST/ORB, and ASIFT/SIFT. These combination
either provided much less matchings (e.g. ORB), or took
very long to compute with only minor improvements for
our test environment (e.g. ASIFT). As a result, both
SIFT and SURF proofed to be suitable to precompute
matches for an SfM-based 3D reconstruction. To exploit
the advantages of both feature detectors, we propose to
combine them in order to maximize the quality of the
matching in challenging indoor environments.

IV. The combined SIFT/SURF approach
Fig. 2 gives an overview of the approach. The model is

created from many overlapping pictures from the scene.
The pictures should be taken from poses that are likely
to appear during the localization phase, e. g., at the
carrying height of the smartphone.

SIFT and SURF keypoints and descriptors are com-
puted from all pictures. Then pairwise SURF matches
and SIFT matches are computed separately. Finally, the
good matches are combined and outliers are removed
as described above. VisualSFM then computes a feature
cloud of the scene. The resulting trained model contains

the SIFT/SURF descriptor files and the feature cloud.
Also, a graph of all adjacent images is created from the
matches. Fig. 3 shows examples that hardly match. So,
we defined that at least 10 inliers are necessary to extend
the graph by an edge between the images.

In the localization phase, SIFT/SURF features are
computed from a test image. Considering a stream of
images, model descriptors can be reduced in the match-
ing process by only using descriptors that appeared
in the highest rated train images from the preceding
localization and all of its neighboring images (graph
filter). Afterwards, SIFT and SURF matching are per-
formed separately. Both SIFT and SURF results are
then combined and the camera resection is solved using
a RANSAC approach. The perspective-n-point solver
(PNP) computes the position of a camera using a set
of 3D points, corresponding image points, and camera
intrinsic parameters (500 iterations, reprojection error
2 px, confidence 0.999). The result reflects the best posi-
tion where a reprojection of the corresponding 3D points
to the camera plane is accurate for all image points.

V. Experiments

In this first evaluation, we investigate the robustness
of our combined approach against a purely SIFT or
SURF approach by localizing a sequence of images taken
from a smartphone camera. Our software is implemented



Fig. 4: Top view of the test area (slice of the feature
cloud): a foyer with an adjacent office floor. The
camera path is shown in red.

in Java using OpenCV (e. g., for SIFT/SURF, PNP, and
homography) and JGraphT. We use a challenging area
in an office building at the TU Bergakademie Freiberg
as a test track. The path crosses a dark scene in an office
floor. Fig. 4 shows the top view of the reconstructed area.
The camera paths is given in red.

The model was constructed using 447 camera images
(1920x1280) taken by a Canon EOS 760D and 18mm
standard lens. Images were not undistorted, but EXIF
data such as focal length is used by VisualSFM. Three
models could be computed: SURF 59142 3D pts. (291923
descriptors 429 cams used), SIFT 26053 3D pts. (127992
descriptors 394 cams used), COMBINED 65012 3D pts.
(363005 descriptors 447 cams used). All models were
aligned (scaled, translated, and rotated) using 4 ground
control points (GCP) of camera positions.

The test images consist of 301 images (640x480) from
an office floor. They were recorded using an Android App
on a Sony Xperia Z1 Compact smartphone. The App
uses the camera preview mode to realize the recording.
The overall length of the camera path in the office floor
is approx. 7,65m and it took around 13 s to record. The
speed of movement was approx. 58 cm/s.

We processed the test images one after another on a
Core i7-3720QM with 8GB of RAM and 512GB SSD
drive (Linux Mint 17.3 64-bit, OpenJDK Java 1.7). The
intrinsics of the smartphone camera were known.

Table I summarizes the result of the localization tests.
It shows the number of recognized images, the average
time used for processing per image, and the average
number of inlier points in case of a successful localiza-
tion. We considered an image as localized successfully
if the distance between the pose and the ground truth
is lower than 1m and the angle of the rotation vectors
in camera coordinate system is lower than 10◦. Two
configurations of the graph filter have been applied
using min. 50 and 100 matches to include neighboring
images. Surprisingly, the number of recognized images is
higher using SIFT rather than SURF. The COMBINED
version can almost recognize all images using any filter.

Table I: Results of localization in an office floor
office floor (301 images)

graph SURF SIFT COMBINED
filter rec. time in. rec. time in. rec. time in.

(ms) (ms) (ms)
none 162 875 60 280 1055 61 299 1874 111
50 206 314 53 275 430 65 296 967 115

100 163 258 63 171 309 84 299 439 120
rec.: successfully recognized images
time: avg. processing time per image
in.: avg. inliers in PNP solver

The number of inliers is significantly higher using the
COMBINED approach. Still, the processing speed when
comparing the highest recognition ratios (SURF 50,
SIFT 50, and COMBINED 100) is competitive for our
novel COMBINED approach.

The ground truth camera positions were obtained
from an SfM model containing both 447 train images and
301 test images. We created it from a SIFTGPU features
and used the VisualSFM tool suite. SIFTGPU computes
keypoints/descriptors different from SIFT/SURF. Since
this technique is not a real external reference system, the
ground truth may include an error of some cm/deg with
respect to the real world and can only be used to check
the plausibility of our results.

VI. Conclusions
We presented first results on a combined SIFT/-

SURF localization approach for indoor environments
that outperforms single detector approaches using SIFT
or SURF. It only adds a small computation time over-
head in the localization phase. We plan to accelerate the
localization and to compare it to other works in the field
in different case studies. Furthermore, our technique can
also be combined with IMU data or an external reference
system to improve the localization.
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